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Contribution

• Distance between private model via output smoothing and optimal model, and
the difference between their fairness levels are bounded by O(

√
p/n).
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Notation

• X : Feature space in Rp

• Y : Finite set of labels

• S ⊂ X : Set of sensitive attributes

• D : Distribution over X × Y

• D = {(x1, y1), · · · , (xn, yn) : i.i.d data from D

• H : function space of h : X × Y → R.

• H(x) : argmaxy∈Y h(x , y)

• ρ(h, x , y) = h(x , y)−maxy′ ̸=y h(x , y
′) : Margin of a model h for an

example-label pair (x , y)
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Fairness

• Focus on Group Fairness.

• As in Maheshwari & Perrot, when data can be partitioned into K disjoint
groups by D1, · · · ,Dk (ex : D(y=1,s=1),D(y=0,s=1),D(y=1,s=0),D(y=0,s=0)),
fairness definitions can be written as

Fk(h,D) = C 0
k +

K∑
k′=1

C k′
k P (H(X ) = Y | Dk′)

where the C k′
k ’s are group specific values independent of h.
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Fairness

• Example : Equalized Odds (Hardt et al., 2016)

- Let ∀(y , s) ∈ Y × S, Y = {0, 1}

- F(y,s)(h,D) = P(H(X ) = Y |Y = y , S = s)− P(H(X ) = Y |Y = y).

= C 0
(y,s) +

∑
(y′,s′)∈Y×S

C
(y′,s′)
(y,s) P

(
H(x) = Y | Y = y ′, S = s ′

)
with when y = 1

C 0
(y,s) = 0

C
(y,s)
(y,s) = 1 − P(S = s | Y = y)

∀s ′ ̸= s,C
(y,s′)
(y,s) = −P

(
S = s ′ | Y = y

)
∀y ′ ̸= y , ∀s ′ ∈ S,C(y′,s′)

(y,s) = 0

when y = 0, C(y′,s′)
(y,s) = 0 for all s ∈ S
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Fairness

• Use the mean of the absolute fairness level of each group:

Fair(h,D) =
1
K

K∑
k=1

|Fk(h,D)|

which is 0 when h is fair and positive when it is unfair.
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Definition(Dwork,2006)

• Let Apriv : (X × Y)n → H be a randomized algorithm.

• Define Apriv is (ϵ, δ)-differentially private if, for all neighboring datasets
D,D ′ ∈ (X × Y)n and all subsets of hypotheses H′ ⊆ H,

P
(
Apriv (D) ∈ H′

)
≤ exp(ϵ)P

(
Apriv (

D ′) ∈ H′
)
+ δ
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Output perturbation

• Define h∗
n as

h∗
n = argmin

h∈H

1
n

n∑
i=1

ℓ (h; xi , si , yi )

• Output perturbation make the non-private solution h∗
n be a private estimate by

the Gaussian mechanism :

hpriv = πH
(
h∗ +N

(
σ2Ip

))
where πH is the projection on H.

• It is known that given ϵ > 0 and δ < 1, hpriv is (ϵ, δ)-differentially private as
long as

σ2 ≥ 2∆2 log(1.25/δ)/ϵ2

where ∆ = 2Λ/µn
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Assumption

• ρ is Lipschitz-continuous∣∣ρ(h, x , y)− ρ
(
h′, x , y

)∣∣ ≤ Lx,y

∥∥h − h′∥∥
H ,

where Lx,y < +∞ depends on the example (x , y) and ∥·∥H is Eucildean and
Hisconvex .

• Loss function ℓ : H×X × Y → R is Λ-Lipschitz and µ-strongly convex with
respect to h.
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Theorem

Theorem
Let hpriv be the vector released by output perturbation with noise
σ2 = 8Λ2 log(1.25/δ)/µ2n2ϵ2, and 0 < ζ < 1, then with probability at least 1 − ζ,∥∥∥hpriv − h∗

∥∥∥2

2
≤ 32pΛ2 log(1.25/δ) log(2/ζ)

µ2n2ϵ2
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Theorem

Theorem
With probability at least 1 − ζ,∣∣∣Fk

(
hpriv ,D

)
− Fk (h

∗,D)
∣∣∣

≤
χk

(
href ,D

)
LΛ

√
32p log(1.25/δ) log(2/ζ)
µnϵ

.

where href ∈ {hpriv, h∗} and χk(h,D) =
∑K

k′=1

∣∣∣C k′
k

∣∣∣E(
LX,Y

|ρ(h,X ,Y )|

∣∣∣ Dk′

)
.
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Experiment

Figure 1: Experiment Result

• Private models mean (1, 1/n2)-DP model learned by output perturbation.
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